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Abstract

In this thesis, microwave diplexers are designed by different methods using
rectangular waveguide cavities with chebyshev response. The diplexers can be used as
front-end components in E-band [CH1:71-76 GHz and CH2:81-86 GHz] transceivers
that are used in point-to-point mobile backhaul applications to offer gigabit wireless
connectivity over a distance of a mile or more. Two diplexers have been designed, a T-
junction diplexer and a manifold diplexer.

The T-junction diplexer has been designed by using two waveguide-cavity
band-pass filters and then, the two filters are connected by a common H- plane T-
Junction to divide power between filters equally. The manifold diplexer has been
designed by connecting the channel filters by the manifold (transmission line sections
and T-junctions). Each channel filter has been designed of five waveguide cavities
coupled together using inductive apertures.

An EM simulation software CST has been utilized to design the diplexers by
employing both parameter sweep and optimization techniques to achieve the required
response. The simulation results show that the responses of both diplexers meet the
requirements of the E-band diplexers in terms of return loss and isolation.
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Chapter 1
Introduction

The term microwaves may be used to describe electromagnetic (EM) waves with
frequencies ranging from 300 MHz to 300 GHz, which correspond to wavelengths (in
free space) from 1 mto 1 mm. The EM waves with frequencies above 30 GHz and up to
300 GHz are also called millimeter waves because their wavelengths are in the
millimeter range (1-10 mm) as shown in figure 1.1.

The millimeter wave spectrum at 30-300 GHz is of increasing interest to service
providers and systems designers because of the wide bandwidths available for carrying
communications at this frequency range. Such wide bandwidths are valuable in
supporting applications such as high speed data transmission and video distribution [1].

Today, as the demand for bandwidth increases daily, operators who rely
on Wireless backhaul are turning to new frequency spectrums to lower their wireless
backhaul costs. Wireless systems operating in the newly-allocated E-Band spectrum
(71-76 GHz for downlink, 81-86 GHz for uplink) have clear technological and
economic advantages. The E-Band spectrum is expected to become the “Next
Generation Wireless Backhaul Spectrum” playing an important role in easing the
backhaul pain of mobile operators [1].

= oy
2 5 A
2 =
e g
; = Frequency Band
range designation
Imm — 300 GHz— 140-220 GHz G-band
110-170 GHz D-band
75-110 GHz W-band
» 0mm— 30 GHz— 60-90 GHz E-band
5] 50-70 GHz V-band
= 40-60 GHz U-band
ES 10cm - 3 GHz— 33-50 GHz Q-band
e 26.5-40 GHz Ka-band
Q 18-26.5 GHz K-band
lm — / - 12.4-18 GHz Ku-band
E, 300 MHz 8124 GHz X-band
= 4-8 GHz C-band
=] f 2-4 GHz S-band
% 10 m — 30 MHz— I> GHa L-band
g 3003000 MHz ~ UHF-band
, 30-300 MH. VHF-band
- 100 m—| 3 MHz— z
o
'-g:
~ 1 km— 300 kHz—]
\

Figure 1.1: RF/microwave spectrums

The millimeter wave spectrum above 70 GHz is especially suitable for
high data rate fixed links with cost effective, fiber like wireless performance.
Because of the unique propagation characteristics in these bands it is possible to
employ highly directional “pencil beams,” allowing multiple services and

1
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applications to be implemented without interference concerns, ensuring highly
efficient reuse of the spectrum [2].

1.1 E- band Technology Overview

The 71-76 and 81-86 GHz bands (widely known as “E-band”) are permitted
worldwide for ultra-high capacity point-to-point communications. E-band wireless
systems are available that offer full duplex Gigabit connectivity at data rates of 1 Gb/s
and higher in cost effective radio architectures, with carrier class availability at
distances of a mile and beyond [3].

The significance of the E-band frequencies cannot be overstated. The 10 GHz
of spectrum available represents by far the most ever allocated by the Federal
Communications Commission (FCC) at any one time, representing 50-times the
bandwidth of the entire cellular spectrum. With 5 GHz of bandwidth available per
channel, gigabit and greater data rates can easily be accommodated with
reasonably simple radio architectures. With propagation characteristics comparable
to those at the widely used microwave bands, and well characterized weather
characteristics allowing rain fade to be understood, link distances of several miles
can confidently be realized [3].

1.2 A Brief History of the E-band System

The 71-76 GHz and 81-86 GHz E-band allocations for fixed services were
established by the International Telecommunication Union (ITU) almost 30 years
ago at 1979, World Administrative Radio communication Conference (WARC-79 ).
However not much commercial interest was shown in the bands until the late
90’s, when the FCC’s Office of Engineering and Technology published a study on
the use of the millimeter wave bands[4].

At the conference 2000 WARC-00, ITU delegates discussed enabling high
density fixed services at high frequencies. At this time, several events were converging
that caused interest in E-band wireless system. Firstly, device technology had
advanced to the point where components operating in the millimeter wave
frequencies could be commercially fabricated. Secondly, crowding in the widely used
microwave bands (6 to 38 GHz) meant designers had to start considering alterative
frequency bands. Finally, with a vision for multi-megabit and even gigabit per second
speeds required by newer generation communication and multimedia services, new
paradigms for wireless transmission were needed [3].

Following petition by the wireless industry, the FCC released a Notice of
Proposed Rulemaking in 2002 [5] that resulted in the opening of the bands under
existing Part 101 fixed service point-to-point rules in 2003 [6]. A novel “light
licensing” scheme was introduced in 2005 and the first commercial E-band radios were
installed soon after [7].
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The wireless regulators in Europe quickly followed the United States (US) lead.
In 2005, the European Conference for Postal and  Telecommunications
Administrations (CEPT) released a European-wide band plan similar to the US
[8]. In 2006, the European Telecommunications Standards Institute (ETSI) released
technical rules for equipment operating in the 71-76 and 81-86 GHz bands. These
were consistent with European (EU) rules to allow E-band wireless equipment to
be commercially used in Europe [9].

Many parts of the world have now followed the US and EU lead, and opened up
the E-band frequencies for high capacity line-of-sight (LOS) wireless systems, enabling
gigabit speed transmission in the millimeter wave bands [3].

1.3 The E-band Frequency Allocation

The E-band frequency allocation consists of the un channelized bands 13
GHz of spectrum at 71to 76 GHz, 81 to 86 GHz, and 92 to 95 GHz was available for,
as shown in figure 1.2. The allocation 71 to 76 GHz and 81 to 86 GHz is significant for
two main reasons. Firstly, the combined 10 GHz of spectrum is significantly larger
than any other frequency allocation. Together this is over 50-times larger than the
entire spectrum allocated in the USA for all generations, technologies and flavors of
cellular services, and much larger than all the widely used microwave communication
bands. The availability of such a large spot of spectrum enables a whole new generation
of wireless transmission to be realized [4] [5].

cellular microwave 60 GHz E- Bands 90 GHz
band bands band 2x5 Ghz bands band
. Mul ‘ | Y r Y T Y ,
] 10 GHe 2D GHir. 30 GHe 40 GHE 30 GH BGHE TOGHE B0 GHr. WGHr TGHE
(@
Chanrel Channel
size size
5GHz 5GHz
<> <>
| T T | T T | T T T 1
0 10GHz 20GHz  30GHz 40GHz  50GHz B0GHz 70GHz 80GHz 90GHz 100 GHz

(b)

Figure 1.2: (a) Significant USA frequency allocations, (b) ITU allocation of e-band
frequencies

3
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Secondly, the E-band allocation, sub divided into two paired 5 GHz per channel,
is not further partitioned, as is the case in the lower frequency microwave bands.
In the USA, the FCC dived each common carrier microwave band into channels
of no more than 50 MHz . This channel size ultimately limits the amount of data that
can be squeezed into the channel. With 5 GHz channels at E-band allocation, 100-
times the size of even the largest microwave band, significantly more data can be
carried by each signal. The E-band spectrum allocation is enough to transmit a gigabit
of data (1 Gb/s or GigE — Gigabit Ethernet) with simple modulation schemes such
as binary phase shift keying (BPSK). Since there is not the need to compress the data
into small frequency channels, systems can be realized with relatively simple
architectures. Radio equipment can take advantage of low order modulation modems,
non-linear power amplifiers, low cost diplexers, direct conversion receivers, and
many more relatively non-complex wireless building blocks, reducing system cost
and complexity, whilst increasing reliability and overall radio performance [3].

1.4 Wireless Propagation at E-band

At E-band frequencies the Wireless propagation is well understood.
Characteristics are only slightly different to those at the widely used lower
frequency microwave bands, enabling transmission distances of many miles to be
realized. The atmospheric attenuation of radio waves varies significantly with
frequency. Its variability has been well characterized and is shown in figure 1.3 [3].

At the microwave frequency bands of up to 38 GHz, the attenuation due to the
atmosphere at sea level is low at 0.3 dB /km or less. A small peak is seen at 23 GHz,
followed by a large peak at 60 GHz, corresponding to absorption by water vapor and
oxygen molecules respectively. This effect at 60 GHz in particular, where
absorption increases to 15 dB/km, significantly limits radio transmission distance
at this frequency. Above 100 GHz, numerous other molecular absorption effects occur,
limiting the performance of radio transmissions [3].

A clear atmospheric window can be seen in the spectrum from around 70
GHz to 100 GHz. In this area, low atmospheric attenuation around 0.5 dB/km
occurs, close tothat of the popular microwave frequencies, and very favorable for
radio transmission. For this reason, E-band wireless systems can transmit high data
rate signal over many miles under clear conditions with efficient effectiveness [3].
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Figure 1.3: Atmospheric and molecular absorption.

1.5 E-band Technical Attributes

There are a number of additional physical and regulatory enabled technical
characteristics that add to the attractiveness of E-band slice as useful spectrum for
wireless communications technology [3].

Firstly, the gain of an antenna increases with frequency. Thus it is possible to
realize large gains from relatively small antennas at E-band frequencies. Figure 1.4
shows the variation in gain for a 1 ft. (30 cm) parabolic antenna. At the popular 18 GHz
common carrier band, such an antenna has about 32.5 dBi of gain. At E-band
technology, an equivalent size antenna has 44 to 45 dBi of gain. This equates to an
extra 12 dB for E-band or so of system gain per link a significant number when one
considers that just an additional 6 dB of system gain allows a link to be doubled in
length [3].

Secondly, the FCC permits E-band radios to operate with up to 3W of
output power. This is significantly higher than available at other millimeter wave
bands. Also the bandwidth of 5 GHz wide E-band channels enable the radio to pass high
data rate signals with only low level modulation schemes (for example, BPSK
modulation can easily allow 2 Gb/s data rates in the 5GHz channels). At high output
power and high antenna gain allows E-band radios to operate with very high
equivalent isotropic radiated power (EIRP) and hence overcome the higher rain
fading at higher frequencies, enabling system performances that are equivalent to the
widely used microwave point-to-point (PTP) radios system [3].
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1.6 E-band benefits over other wireless spectrum

E-Band wireless technology allows Gb/s data rates to be transmitted with very
high weather availability over distances of a mile or more. Characterized as Low
Probability of Detect/Low Probability of Intercept (LPD/LPI), it is a perfect technology
to satisfy hostile territory battlefield situations where there’s a need for high security,
high speed, point-to-point, non-wire-line communications. A novel licensing structure
coupled with an ability to quickly deploy links permits rapid response to homeland
defense and other time critical security applications [11].

There are many technologies competing to provide wireless broadband
connectivity and bridge the last mile gap. This section explores how E-band
wireless systems compete effectively against these alternatives, and brings
significant advantages to wireless system providers and network designers [12].

1.6.1 High capacity wireless landscape

Figure 1.5 illustrates the major higher capacity wireless technologies available in
present, and how they fit together to make up the current broadband wireless landscape

[3].
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1.6.1.1 Wi-Fi - 802.11 a/b/g

The wireless fidelity (Wi-Fi) is a short distance, multi-access technology. Its
popularity stems from being able to take a single data connection (usually a
residential or equivalent broadband internet connection) and enable several users
within a “hot spot” area to share that data connection. Equipment is currently
widely available that can offer data rates of up to 54 Mbps and coverage distances of
up several tens of yards, enabling users with suitable connection equipment fast
and easy wireless access to whatever services are being offered. Extended
versions of the Wi-Fi family are constantly evolving, improving performance and
speeds. The latest 802.11n version offers improved data rates through the introduction
of multiple antennas and wider channel transmissions, which supports up to 600 Mbps
[12].

Like most technologies, Wi-Fi has a number of limitations. Practically, data
rates are dependent on the distance from the access point, the number of users
sharing the capacity, and the usually constrained size of the access point’s
broadband connection. In commercial hot spot environments, users would
typically realize only 1 Mbps or so connectivity. By necessity, Wi-Fi is also an
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unlicensed, broadcast, point-to-multipoint technology, allowing users to easily
connect and disconnect from the service. This means interference, data contention
and data collisions are difficult to avoid, resulting in network outages, connectivity
issues and security concerns [3].

For these reasons, Wi-Fi is not a useful technology for wide area high
data rate connectivity. It is a very useful wireless technology for easy access,
short range coverage within a limited range properties that have made the
technology very popular [3].

1.6.1.24G - WIMAX, LTE and UMB

in [11], Fourth-Generation (4G) wireless systems — the technologies of
worldwide Interoperability for Microwave Access (WIMAX), long term evolution
(LTE) and Ultra Mobile Broadband (UMB) — promise a substantial increase in data
rates over existing second (2G) and third generation (3G) cellular systems.

WIMAX is the closest of these technologies to realization. It is often described
as a “big brother” version of Wi-Fi. The WiMAX standard has addressed many of the
quality of service (QoS) and security issues inherent with Wi-Fi and when properly
implemented, provides a much higher user experience. In addition, WIMAX is
usually implemented using licensed technology in frequencies close to the cellular
bands, further improving the QoS . Theoretical data rates of many tens of Mbps are
possible, and real systems are offering user data rates of 2 to 4 Mbps and up over cell
sizes of a few miles. Future extensions to the WiMAX family (for example 802.16m, or
mobile WIMAX release 2.0) will further extend user data speeds and experiences.
WIMAX does offer the benefit of mobility, making the analogy to advanced cellular
systems more accurate than to Wi-Fi networks [3].

LTE and UMB technologies are the next generation of the existing 3G cellular
technologies. Theoretically, data rates to 100 Mbps and beyond are possible. Complete
standards are likely to be realized in the next few years, and early experimental systems
demonstrating improved data throughput are already being seen today. For these
reasons, 4G technologies are ideally placed to be useful for wide area, mobile
connectivity, with data rates higher than existing cellular standards. As 4G technologies
are all access technologies, upgrade of the backhaul networks are required to support the
4G increases in data rates. That makes these technologies very complementary to the
high data rate point-to-point technologies introduced later in this section [3].
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1.6.1.3 Point-to-Point Microwave link

Fixed wireless radios at microwave frequencies from 6 to 38 GHz are
widely used for point-to-point (PTP) data transmission. PTP microwave is used to
interconnect cell site and fiber points of presence, its widely available with data rates
from a few Mbps up to several hundred Mbps. PTP microwave radios have to
compress the data into the narrow channels that are required in the microwave
frequency bands. These can be up to 50 or 56 MHz, but are typically 28 or 30 MHz and
below. Thus PTP microwave radios employ sophisticated signal processing circuitry
and high order 128 or 256 Quadrature Amplitude Modulation (QAM ) to squeeze
data into the narrow available channels [3].

Microwave radios have an important role to play for high quality line of
sight connectivity. Systems can be engineered to reliably transmit for several miles and
the use of licensed technology means the systems will be robust and reliable. However
limited regulated channel sizes in the microwave bands means that even the most
complex and sophisticated widely available systems are limited to 311 Mbps or so data
rates [3].

1.6.1.4 60 GHz wireless technology

60 GHz has been used as a wireless transmission frequency for many years, due
to the property that oxygen in the atmosphere strongly absorbs radio waves at this
frequency, Small beam sizes coupled with oxygen absorption makes these links highly
immune to interference from other 60GHz radios [13]. Users, particularly in the
military, have exploited this characteristic by developing short range systems that
will transmit a few hundred yards before the signal rapidly deteriorates and so
cannot be eavesdropped. The availability of large amounts of bandwidth at these
frequencies has resulted in recent commercial interest for high data rate short range
commercial applications [2] [3].

Differing worldwide spectrum allocations of the 60 GHz bands means
regional differences in available equipment. In the USA, large amounts of
bandwidth are available, enabling cost effective systems that can transmit data
rates to 1 Gb/s to be realized. However the natural oxygen attenuating properties
and low regulated power limits means such system can only reliability transmit a
few hundred yards. With “best effort” connectivity, system can be engineered to
transmit up to half a mile. Since the band is designated as license exempt in the
US, systems are potentially at risk from interference, either from other links or
from future services which might use the open bands. In Europe, the bands are
managed very differently, with narrow channels limiting the data throughput of systems

[3].

For these reasons, 60 GHz radios are very useful for providing high data
rate interconnections . However systems are limited in distance to just a few
hundred yards, and the unlicensed nature of the bands poses problems for sophisticated
users who do not want to risk downtime due to interference outages [3].
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1.6.1.5 Free space optics

Free space optic (FSO) systems use modulated lasers to transmit very high data
rates in the invisible optical spectrum close to the visible bands at a distance nearly
2km. Systems are available that can transmit data rates of 1 Gb/s and beyond [3].

FSO suffers from the disadvantage that as a highly focused optical
technology, any deterioration or blockage of the laser like signal path will affect
the link quality. Atmospheric effects such a fog, dust, sand, air turbulence and
sunlight shimmer limit practical link distances to just a few hundred yards in
many parts of the world. In addition, practical effects such as flying objects
breaking the beams, or tiny building or tower movements unlocking the precisely
pointed equipment, means that sophisticated tracking mounts and multiple
transmitters and receivers are required. This results in high complexity
equipment, adding to system cost, and introducing reliability and maintenance
concerns. Finally the use of lasers raises eye safety concerns, and also reliability
questions due to the naturally high failure rate of optical devices [3].

Like 60 GHz radios, FSO systems are useful for high data rate
transmission over distances of a few hundred meters. High performance systems can
be very complex and expensive to maintain, with equipment reliability and failure
rates much higher than standard radio systems [3].

1.6.1.6 E-band wireless system

The 71-76 and 81-86 GHz E-band channels were implemented in part to address
the shortfalls of these other wireless technologies. The bands are globally available for
fixed wireless point-to-point communications. The 10 GHz of bandwidth available the
largest international telecommunication union (ITU) bandwidth allocation for such
services provides such a large bandwidth that ultra-high data rate wireless capacities
of 1 Gb/s and beyond can be realized with relatively simple, low cost radio
architectures. The 71-86 GHz frequencies occur in an “atmospheric window”, whereby
atmospheric attenuation is similar to the well-used lower frequency microwave bands of
23 and 38 GHz. With similar propagation characteristics to these popular bands, and
well characterized weather attributes allowing rain fade to be understood and
predicted, link distances of several miles can confidently be realized. To encourage
uptake of services in these bands, the FCC, along with various other wireless
regulatory agencies around the world, have implemented “light licensing” regimes
for the bands, whereby the full benefits of interference protection are awarded to
system providers, but with licenses that can be quick and cheaply obtained [3].
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1.6.2 E-band wireless benefits
E-band system offer numerous benefits, these include [3]:

e Highest data rates of any wireless technology, with systems available that
offer 1 Gb/s and above full duplex throughput.

e Guaranteed data rates, unlike Wi-Fi, WIMAX and other broad coverage
technologies whose system performance depends heavily on the radio
environment, number of users, distance from base station and even
installation quality, E-band systems offer guaranteed data throughput
performance, even under deteriorated transmission conditions.

e Long distance transmissions , E-band wireless offers the longest
transmission distances of the higher capacity wireless systems. Under any
environmental condition, a 1 Gb/s E-band system can transmit many times
further than similar data rate 60 GHz or FSO systems.

e Robust weather resilience, all the higher frequency wireless systems —
microwave, 60 GHz, FSO and E-band — are sensitive to rain fades. Unlike
FSO, E-band is not subject to fog, dust, air turbulence or any other
atmospheric impairment that can take down optical links for hours over
regular cycles.

e Guaranteed interference protection ,Since E-band is a licensed
technology, all links have to be registered with national wireless regulators and
coordinated with other links in the area. This gives links full interference
protection from other nearby wireless sources.

e Low cost, rapid license availability, in many countries, links are licensed under
a “light license” process, whereby licenses can be obtained quickly and cheaply.

e Cost effective, fiber-like wireless solution , high capacity wireless systems
are available at a fraction of the cost of buried fiber alternatives.

1.7 The Mobile Backhaul Challenge

The introduction of broadband cellular technologies such as high speed packet
access (HSPA) , LTE and WiMAX which provide users with Digital Subscriber Line
(DSL) like and higher data speeds at flat rate pricing models is changing consumer
mobile phone usage habits making mobile web browsing and emailing routine. This
changing user behavior generates huge amounts of data, leading to congestion in
bandwidth demands as data traffic doubles and even triples. This data explosion places
an ever increasing strain on operators’ mobile backhaul networks [14].

The mobile backhaul network is commonly referred to as the transport links
connect cell sites as Base Stations (BS), Node B, E-UTRAN Node B (e NodeB) with
the core switching and management elements (as can be seen in figure 1.6). Traffic,
both voice and data transported to and from the cell sites via the backhaul network
required services with high reliability and availability [14].
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in [3], E-band wireless system offer a compelling alternative to these different

broadband technologies,

often with many advantages over

other

systems.

A

summary of how the most important system parameters and network characteristics
compare are detailed in the table 1.1.

Tablel.1: Comparison of key system parameters for leading high data rate technologies [3].

Variable, | Variable, 2to 311 100 Mbps to | 100 Mbpsto | To 40 100 Mbps to
typically 1 | typically 10 | Mbps 1 Gb/s 1 Gb/s Gbl/s 3 Ghb/s
Mbps Mbps today; to 10
Gb/s in the
future
20 yards 2 miles 5 miles 500 meters 200 meters Unlimited | 1-3 miles &
higher
Freely Spectrum Usually Varies, Spectrum n\a Available ,
unlicensed | very scarce | available for | Available freely usually as a
Owned area for available as low cost
licensing unlicensed technology “light
use in USA | not regulated license”
No Usually Yes No No Yes Yes
Low High Medium Medium Medium High Medium
Hours Months Weeks Hours/Days | Hours/Days Months/ Hours/Days
/Years /Months Years
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1.9 E-Band Applications
E-band technology is well-suited for a variety of applications: Mobile backhaul [15]

WIMAX/LTE/4G backhaul

Ethernet connectivity

Remote Storage Access

Redundant Access/Network Diversity
Local Area Network Extension

Wide Area Networks

Metropolitan Area Networks (MAN)

1.10 Overview of Diplexers and applications

The 71-76 GHz and 81-86 GHz E-band frequencies are globally available for
ultra-high capacity point-to-point communications, providing Gigabit Ethernet data
rates of 1 Gb/s and beyond. Cost effective radio architectures have been realized that
enable carrier class availability at distances of a mile and further [16]. E-Band diplexer
is a fundamental part of E-Band radio link which is commonly used for LTE
backhauling [17] as illustrated in figure 1.7.

DIPLEXER T.
Antenna ;T é -

System
/ % backhaul

Network

Figure 1.7: diplexer in network

Electrically a diplexer is a device using sharply tuned resonate circuits to isolate
a transmitter from a receiver signals. This allows both of them to operate on the same
antenna at the receiver same time without the transmitter Radio Frequency (RF) frying
the receiver. Note that there must be a separation of transmit and receive frequency
[18].

A diplexer is a device for either splitting a frequency range band into two sub-
bands or combining two sub-bands into one broader frequency range. This device is
widely used on board PTP wireless communication link because it permits the use of
the same antenna for different frequency bands, and, therefore, an important
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Reduction of mass and volume is achieved. The diplexer consists of power divider
and two channel filters [19].

Diplexers were widely studied in the early 1960s by G. L. Matthaei [20] and
Robert Wenzel [21] and in the last years the synthesis of microwave diplexers has been
studied intensively. The general theory for the synthesis of diplexers is indeed published
in the 1970s and the effort has been continued by many researchers, especially in recent
years [22].

Microwave diplexers are typically employed to connect the receiver RX and
transmitter TX filters of a transceiver to a single antenna through a suitable three port
junction as shown in figure 1.8. The increasing development over the last years of
mobile communication systems has stimulated the need for compact high selectivity
diplexers to be used in both combiners for base stations and millimeter wave point-to-
point radio links [23]. Diplexers may consist of high-pass and low-pass, band-pass and
band-pass, band-pass and band-stop, and other combinations [24].

DIPLEXER

ANTENNA

N4

Figure 1.8: Diplexer scheme

The band-pass filter in the transmitter path (BPF-TX) stops the transmitter noise
artificially increasing the receiver noise figure, while the bandpass filter in the receiver
path (BPF-RX) stops the transmitter signal overloading the receiver [25].

14

www.manaraa.com



1.11 Thesis Motivation

The main goal of this thesis is the analysis and designs a microwave diplexer for
E-band system. This component will be used as a front-end in the microwave
transceiver of a point-to-point in mobile backhaul application, which offers Gigabit
wireless connectivity over a distance of a mile or more. It is specified to work at the
frequency channel bands [DL CH1: 71-76 GHz and UL CH2: 81-86 GHz]. The diplexer
will be designed using two methods to combine the two bandpass filters: first method
uses external waveguide H-plane T-junction, and the second method is by employing a
manifold. The performance of all design techniques will be compared in terms of
isolation and return loss.

1.12 Thesis Overview

The objective of this research is to analyze and design a waveguide diplexer that
is specified to work at the frequency channels E- band [DL CH1: 71-76 GHz and UL
CH2: 81-86 GHz]. The diplexer is designed of two bandpass filters and a combining
network and the aim is to obtain small insertion loss and good isolation between the
channel ports.

Chapter 1 presents background technology of E-band wireless system, overview of
diplexer and its applications.

Chapter 2 explains the different types of filters. It presents the derivation of the coupling
matrix of resonator filters, and transformation method of filters

Chapter 3 explains the types of diplexers configurations such as T-junction, manifold
and star junction. Also explain the different structures.

Chapter 4 presents the design procedure of diplexers for E-band system and the
relationship between the coupling coefficients and the physical structure of coupled
resonators in order to find the physical dimensions of the diplexer. Then, it shows the
whole structure of the diplexer and its response resulting from computer simulation
technology (CST2012) based on finite integral technique (FIT). Finally I will make a
comparison between two designs and another comparison of commercial diplexers with
my thesis work.

Chapter 5 provides summary and conclusions drawn from this work and future work
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Chapter 2
Overview of Microwave Filters

2.1 Introduction

The microwave filter is necessary and vital component in a huge variety of electronic
systems, including mobile radio, satellite communications and radar. Such component is
used to select or reject signal at different frequencies. Although the physical realization
of microwave filters may vary, the circuit network theory is common to all. They are,
by nature, distributed networks that usually consist of periodic structures to exhibit
passband and stop band characteristics in various frequency bands. It is desirable that a
design method would be able to determine the physical dimensions of a filters structure
having the desired frequency characteristics. Research on microwave filters has spanned
more than sixty years, and the number of contributions devoted to the design methods of
microwave filters is enormous. Reviews on the topic of filters designs in a historical
perspective can be found in [1, 2, and 3].

2.2 Overview of coupled resonator filters

Coupled resonator circuit prototypes are most commonly used in the design of
microwave coupled resonator bandpass filters in the sense that they can be applied to
any type of resonator despite its physical structure. They have been applied to the
design of coaxial filters [4,5] as illustrated in figure 2.1, waveguide filters [6,7] as
shown in Figure 2.2, dielectric resonator filters [8], ceramic combine filters [9] as
illustrated in Figure 2.3, Microstrip filters [10-13] as illustrated in figure 2.4,
superconducting filters [14] as shown in figure 2.5, and micro-machined filters [15] see
figure 2.6. The design method is based on the coupling coefficients of the inter-coupled
resonators and the external couplings of the input and output resonators. Therefore, a
relationship between the coupling coefficients and the physical structures needs to be
established. The formulations for extracting the couplings are given next section for
different cases.
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Figure 2.6: W-Band Micro-machined Cavity Filter [16]
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2.3 Coupling matrix representation

Coupling between resonators can generally be electric or magnetic or mixed
electric-magnetic as illustrated in figure 2.7, In the cases of magnetically coupling
resonators, using Kirchhoff's voltage law, the loop equations are derived from the
equivalent lumped element circuit model shown in figure 2.8 (a), and represented in
impedance matrix form; whereas for electrically coupled resonator, using Kirchhoff's
current law, node equations are derived from the equivalent lumped element circuit
model in figure 2.8 (b) and represented in admittance matrix form. The derivations
show that the normalized admittance matrix has identical form to the normalized
impedance matrix [10].

2.3.1 Circuits with magnetically coupled resonators

Figure 2.8 (a) is an equivalent circuit of n-coupled resonators L, C, and R denote
the inductance, capacitance and resistance, respectively [10].

Using Kirchhoff's voltage law, the loop equations are derived as follows,

: 1 ). . : . .
[Rl+ jWLl+jW—lel—jWL12I2-~-— JwlL 1, =€

1

_ijlzilJ{jWL2 + leC ]iz..._ijZHin =0

2

(2.1)

—jwL i, —jwL i +...+ jwL i +| R+ JjwL_+ i =0
J nl'1 J n2'n J (n-1)2" (n-1) [ n J n JWCHJ n

Where L; =L denotes the mutual inductance between resonators i and j, which can be

represented in matrix form

R, + jwL, + We —jwL,, —jwL,,
1
Il es
) . 1 .
—JjwL wL, +-— —JwL,, i 0
J 21 J 2 JWC2 J 2 :2 — : (2.2)
i 0
. . ) 1 "
—jwL —jwL -« R +jwL_ +
I J nl J n2 n J n JWCn
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Resonator | Resonator 2

E, E.

(a)

Lyl L L 2, | 20 L
——
J_ |
G ==C |:> C,-Ca : Cr-CouTF
e
i
I
(b)
c T C C Li-L Lyl C
I » I I - ! M Ik
L n L1 I
|
Lito — i fo.
|
t
|

(<}

(d)

Figure 2.7: Inter-coupling between coupled resonators. (a) General coupled
RF/microwave resonators where resonators 1 and 2 can be different in structure
and have different resonant frequencies (b) Coupled resonator circuit with electric
coupling. (c) Coupled resonator circuit with magnetic coupling. (d) Coupled
resonator circuit with mixed electric and magnetic coupling.
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Figure 2.8: (a) Equivalent circuit of magnetically resonator filters, (b) Equivalent
circuit of electrically resonator filters.

Equation 2.2 can be written in the form:

Where [Z] nxn

[2].[11=I[e]

impedance matrix, for is simplicity, let us first consider a

synchronously tuned filter; in this case, all the resonators have the same resonant
@, =1/~LC , where L=L =L,=---L, andC=C,=C,=---C,; The

frequency

impedance matrix [Z] can be expressed by

[Z]= w,L.FBW [Z] , where FBW=

Aw/ w,is the fractional bandwidth, and [Z] is the normalized impedance matrix, given

by,

With P =

J [o o
FBW (o, o

R, jwL, 1
w,L (FBW ) oL FBW
_wk, 1 P

w,L FBW

jwL ;1 jwL,, 1
ol FBW @l FBW

Jdwky, 1

oL FBW

_dwky, 1

wL FBW

R

n

S R—
wL(FBW) |

(2.3)

J is the complex low pass frequency variable. It should be
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Noticed that for series external circuit:

1
w,L _Q_ei Fori=1,n (2.4)

Q., and Q,, are the external quality factors of the input and output resonators,

respectively. Defining the coupling coefficients as:

K;=Ly/L (2.5)
We can simplify equation (2.3)
! . . i
EJFP —jky, o —jky,
| —ik P ce ik
z1=| ¥ : Fan (2.6)
i . 1
I _Jknl _Jan E+P

where g is the scaled external quality factor (g, =Q,.FBW ) and k; is the normalized
coupling coefficient (K; =k; .FBW ).A network representation of the circuit of figure

2.8 (a) is shown in figure 2.9, where V,,V, and 1,,1,are the voltage and current

variables at the filter ports and the wave variables are denoted by &,b,a,,b,. By
inspecting the circuit of figure 2.8 (a) and the network of figure 2.9, it can be identified
thatl, =i,,1,=—i, and V, =e, —i;R, [10]

al_>€ Il I E‘_az

R, Two-port n-coupled R
lVl resonator filter V2 g "
e '
S o o
by b,

Figure 2.9: Equivalent circuits of n-coupled resonators
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We have

h (2.7)
And, hence,
b 2Ri
Si _a_i a,=0 _1_f
b, 2/RR, i
Sp="ag0o="""— (2.8)
a, e

Solving equation (2.1) for i; and i, we obtained

e —=-1

ij=——[Z
' a)OL.FBW[ b

= e 12 29

and by substitution of equations (2.9) into equations (2.8), we have,

2R,

S . =1-

1 a)OLFBW[ ]“

_ 2RR, S L L A (2.10)
2 @, LFBW T ™ '

In terms of external quality factorsq, = o,L.FBW /R, the S-parameters become,
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2 —
Sll :1__[2]11

el

Sa :L[Z_];i (2.11)

Y qelqen

In the case that the coupled-resonator circuit of figure 2.7 (a) is asynchronously tuned,
and the resonant frequency of each resonator, which may be different, is given by

wy; =1/,/L5C, , the coupling coefficient of asynchronously tuned filter is defined as

L.
K. =—2— Fori#|j 2.12
T i (2.12)

i

It can be shown that equation (2.6) becomes

1 . . .
_+P_Jk11 _Jk12 _Jkln
el
__ ik P—jk, -  —jk
[Z] — J 21 :.I 21 J 2n (213)
_jknl _jkn2 i"_P_jknn

2.3.2 Circuits with electrically coupled resonators

As can be seen, the coupling coefficients introduced in the above section are all
based on mutual inductance and, hence, the associated couplings are magnetic
couplings. The formulation of the coupling coefficients that result from a two-port n-
coupled resonator filter with electric couplings will be explained in this section. Let us
consider the n-coupled-resonator circuit shown in figure 2.8 b, where v, denotes the

node voltage, G represents the conductance, and i is the source current [10]. According

to the current law, which is the other one of Kirchhoff’s two circuit laws and states that
the algebraic sum of the currents leaving a node in a network is zero, with a driving or
external current of i the node equations for the circuit of figure 2.8 b are [10]
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(Gl + jwC, +

1

— JwC,,i, +(jWC2 +jw+]v2 ~o— JwC,, v, =0

2

jvl — JWC 1V, = JWCy v, =i

(2.14)

— JWC v, — JWC v, + .4 JWC 45V g WL(Gn + JwC, +- 1L jvn =0
JWL,

where C; = C;; denotes the mutual capacitance between resonators a and b. The matrix
form representation of these equations is as follows,

G, + JwC, +— - jwC,,
1
— jwC jwC, +
J 21 J 2 JWL2
- jwC,, - jwC,,

[Y].[v]=[i], where [Y]is the admittance matrix.

- jWCln
Vl is
— v 0
WC2, 2| " (2.15)
. v, 0
G, + JwC, +-
JwL |

Similarly, the admittance matrix in equation (2.15) may be expressed by

[Y]= w,C.FBW [Y]

(2.16)

Where @, =1/-/LCis the mid band frequency of filter, FBW is the fractional
bandwidth and [Y]is the normalized admittance matrix. In the case of synchronously

tuned filter, [Y]is given by

G p WG, 1 WGy, 1]
0,C(FBW) 0,C FBW 0,C FBW
_wly 1 p _ WGy 1

M=| oL FBW 0,C FBW (2.17)
o wC, 1 _wC,, 1 G, P
w,C FBW ©,C FBW w,C(FBW) |
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Where p is the complex low pass frequency variable, Notice that:

G, 1

0,C - Q_e. Fori=1,n (2.18)

Q., and Q,, are the external quality factors of the input and output resonators,
respectively. Defining the coupling coefficients as:

C,
Kj -Cc (2.19)

And assume w/wo = 1 for the narrow-band approximation. A simpler expression of
equation (2.17) is obtained:

1 . .
q_"'P —jky, o =k,
el
m: _Jk21 P _szn (220)
. . 1
__Jknl _Jknz E-’_P

Where g, =Q,;.FBW the scaled external quality is factor, and K; =k;.FBW is the
normalized coupling coefficient.

Similarly, it can be shown that if the coupled-resonator circuit of figure 2.7 (b) is

asynchronously tuned, equations. (2.20) and (2.21) become

1 ) . )
—+P—jky,  —jky, e —JKky,
el
— —ijk P — ik —jk
Y 1= Wea :J “ W (2.21)
_jknl _jan L+P _jknn

en

To derive the two-port S-parameters of coupled-resonator filter, the circuit of figure 2.8
b is represented by a two-port network of figure 2.10, where all the variables at the filter

ports are the same as those in Figure 2.9. In this case,V, =v, ,V, =—-v_,and |, =i, —v,G,
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a—» ]
o
_ G‘.: Two-port n-coupled
HORE: lVl resonator filter
o
b=

1

Figure 2.10: Equivalent circuit of n-coupled resonators

I, —2i,G,

I B
2J6. "7 206,
a,=0 bzzvn\/En

b 2G,v
Sll_a_l a2=0 :1_ il 1
1 S
o _b 2,/G,G, v,
21 a,=0 R
a‘l IS

Finding the unknown node voltages v,, and v,, from equation (2.15)

V. =
1 a)OC FBW [Y]”

V
n C FBW [Y]nl

and by substitution of equations (2.25) into equations (2.24), we have,

2G,
S, =1-
11 oC. FBW [Y]11

2,G,G,
[Y]nl

27 C.FBW
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(2.24)

(2.25)

(2.26)
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This can be simplified as

2.3.3 General coupling matrix

(2.27)

In the foregoing formulations, the most notable is that the formulation of
normalized impedance matrix [Z] is identical to that of normalized admittance matrix

[Y] . This is very important, because it implies that we could have a unified formulation

for a n-coupled resonator filter regardless of whether the couplings are magnetic or
electric or even the combination of both. Accordingly, equations (2.11) and (2.27) may

be incorporated into a general one [10]:

2
821:

S, =i[1—£[A]nlJ

ey
with
[A] =[a] + p [U] —j[K]

i .0 - 0

qfl 1 00 Kyy
e R L

0 .0 - i

L qen_
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VOe1Gen A]

(2.28)
(2.29)
k1(n—1) kln
' ] (2:30)
k(n—l)(n—l) k(n—l)n
kn(n—l) knn
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where [U] is the nxnunit or identity matrix, p is the complex lowpass frequency
variable, [g] is an n x n matrix with all entries zero, except for q,, =1/q,and

q,, =1/q.,, and [K] is the so-called general coupling matrix, which is an n x n
reciprocal matrix (that is, k; =k ;) and is allowed to have nonzero diagonal entries k;;
for an asynchronously tuned filter [10].

2.3.4 General theory of coupling

A general technique for designing coupled resonator filters is based on
coupling coefficients of inter-coupled resonators and the external Q, factors of

the input and output resonators. The external quality factor Q,is characterized the

external coupling between a microwave resonator and the external circuit, which is
shownas Q. and Q, infigure 2.11 [10].

Qua Resonator1 kl? Resonator2 k23 Resonator3 Resonatorn Qep

W, wr wr wr

a zb

1

Figure 2.11: Block Diagram of Microwave Filter structure
2.3.4.1 Coupling coefficient

The coupling K coefficient of two coupled microwave resonators can be

defined on the basis of the ratio of coupled energy to stored energy. It can be defined
mathematically [10]

[[[¢E.oE.av [[]uH,eH dv (2:31)

" Tl T oy TTTatsfan] ] st o

where E and H represent the electric and magnetic field vectors, respectively; The
interaction of the coupled resonator is mathematically described by the dot
operation of their space vector fields, which allows the coupling to have either
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positive or negative sign. A positive sign would imply that the coupling enhances the
stored energy of uncoupled resonators, whereas a negative sign would indicate a
reduction. Therefore, the electric and magnetic coupling could either have same effect
if they have the same sign, or have the opposite effect if their signs are opposite [10].

The magnitude of the coupling coefficient defines the separation d of the
two resonance peaks (as illustrated in figure 2.12). Normally the stronger coupling the
wider separation d of the two resonance peaks |S2;| and deeper the trough in the middle
[10].

S-Parameter Magnitude in dB

— 52,1
-50
-60
-70
-80
-90
-100 t t t t t t t t t t
65 66 68 70 72 74 76 78 80 82 84 85
Frequency / GHz
Figure 2.12: Resonant response of coupled resonator structure
The coupling coefficient can be defined in terms of f, and f,
f 2 —f 2
K=+2—L (2.32)
fo+f;

f, Is the lower resonance frequency and f, is the higher resonance frequency.
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2.4 Quality factors of microwave filter

The quality factor Q is useful measure of sharpness and energy loss of
resonator circuit. It can be defined as [10]:

average energy stored
average energy loss/second

As can been from this definition, low loss implies a higher quality factor, Q .

External quality factor Q,can be defined in terms of resonance frequency f,
and bandwidth Af of the resonator circuit, which is stated below [16]

fO
Q=72 (2.33)
Af =f,—f,

A high Q factor results in a steep roll-off and narrow bandwidth of the resonator as
shown in figure 2.13 [16].

A fy
t
- 3dB
J L
2 by Bandwidth
3 ey f,—f
E 2 2
& L9,
£ =y
< I @,
| [y
3!
g,
[
| I
— -
fl fq f2 Frequency {GHZ]

Figure 2.13: Graph of quality factor [16]
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2.5 Filter design procedure

2.5.1 Chebyshev response

The response of a chebyshev filter has an equal ripple in the passband and a
maximally flat stopband as shown in figure 2.14. The transfer function of the

chebyshev response is described by the amplitude square of the S, as follows [10]:

N 1
S, ()| =m (2.34)

Ly (dB) —>

Figure 2.14: Chebyshev lowpass filter response.

Where ¢ is the ripple constant and given by:

I-Ar
£=\109 —1 (2.35)

where L,, is the passband ripple in dB.

T (©) 1s first kind chebyshev function of order n, defined by:
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cos(ncos Q) Q<1
T (Q) = )
cosh(ncosh 1)  [©>1 (2.36)

The chebyshev filter has the following general rational transfer function [10]:

]l[[;f +sin’(iz/n) ]

Su(P)=1— (2.37)

H[p +P; )]

With

P =] COS{sinl jn+H} (2.38a)

2n
n =sinh (lsinh1 i) (2.38b)

h &

All the transmission zeros of the transfer function are located at infinity. Therefore,
chebyshev filters are known as all pole filters. The poles of the chebyshev filter are

located on an ellipse in the left half plane with major axis of size ,/1+ n® on the jQ-

axis and minor axis of size  on the o-axis [10]. For an 5" order chebyshev filter, the
pole distribution is shown in figure 2.15.
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o Ti(1+mH"”?

® it 4m)?

Figure 2.15: Pole distribution for chebyshev response.

Lowpass prototype filters generally have the element values normalized to make
the source resistance equal to one (g,=1), and the angular cutoff frequency Q. =1

(rad/sec). Generally, n-pole lowpass prototype for Butterworth, Chebyshev and
Gaussian responses have two possible forms that give the same response. The
forms are dual from each other and are shown in figure 2.16.

g, Fori=1 ... n represents series inductor or shunt capacitor, where n is the order of the
filter and represents the number of reactive elements in the prototype structure. g, is

known as the source resistance or inductance, whereas g, +1 is defined as the
load resistance or the load conductance [10].
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or g" gn-ﬂ

(n odd)

Lo

or Lot

(n odd)

Figure 2.16: N-pole lowpass prototype filters with (a) ladder structure and (b) its
dual.

2.5.2 Chebyshev lowpass prototype filters

The element values for chebyshev lowpass prototype networks shown in
Figure 2.16 can be computed for a given passband ripple L, dB and angular cutoff

frequency of Q_ =1 (rad/sec) using the following equations [10]:

0, =1 (2.39)
2 . (&
9, = ;sm N (2.40)
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| o[ DT] i [@=

Where

B gi-1

y? + sin? [

1

N

(i— 1)77]

N

—odd

Ina = cothz(gj N —even

L= In{coth (%ﬂ
_sinh[ £-
y—3|nh(2NJ

The element values for chebyshev lowpass prototype network for passband ripple

=123,....N (2.41)

(2.42)

(2.43)

(2.44)

L,, =0.04321dB are given in Table 2.1 for filter order of n=1t0 9, g,=1, and Q_ =1

and others passband ripple tables for L,, =0.1dB, L,, =0.01dB can be found in [10]

Table 2.1: Element values for Chebyshev lowpass prototype for L,, =0.04321 dB.

n ¢ 92 g3 94 Os Os 97 Os 9o O10

1 0.2 1.0

2 0.6648 0.5445 1.221

3 0.8516 1.1032 0.8516 1.0

4 0.9314 12920 15775 0.7628 1.2210

5 09714 13721 1.8014 1.3721 09714 1.0

6 0.9940 1.4131 1.8933 1.5506 1.7253 0.8141 1.2210

7 1.008  1.4368 19398 1.6220 1.9398 1.4368 1.008 1.0

8 1.0171 14518 19667 1.6574 2.0237 1.6107 1.7726 0.8330 1.2210

9 1.0235 1.4619 19837 1.6778 2.0649 1.6778 19837 14619 1.0235 1.0
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The order of the filter is determined according to the required
specifications; such as the minimum stopband attenuation L, dBat Q = Q for

Q. >1 and passband ripple L, dB. The order of Chebyshev lowpass prototype response
is calculated by [10]:

01lns
cosh™ 100 - L
n> 107" 1 2.45
cosh™ Q. (2.49)

2.5.3 Bandpass transformation

To transform lowpass prototype to bandpass response with passband edge
angular Frequencies of @, and @, , the following transformation formula is used [10]:

_ % (o o (2.46)
FBW\w, o
With
FBW =2~ ang cooz,/a)la)2 (2.47)
2

Where FBW is the fractional bandwidth and «, is the center angular frequency. For
inductive element in the prototype network, the reactance is [10]:
ch _1 chog 1

oo —ol - —— (2.48)
FBW 0, ® FBW oC

So, the inductive element g in the lowpass prototype network is transformed to a

series LC resonator in the Bandpass filter. The elements of the series resonator taking
in consideration the impedance scaling are [10]:

L, =[Ljng c, =[FBW ]i (2.49)

FBW ), @, Q2. 7,9

Similarly, for capacitive element g in the lowpass prototype network, the admittance is:
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o—xg 1909 _ o 1 (2.50)
FBW @, o FBW wl

So, the capacitive element g in the lowpass prototype network is transformed to a
parallel LC resonator in the Bandpass filter. The elements of the parallel resonator
taking in consideration the impedance scaling are:

L, = FBW % C,-= _ 9 9 (2.51)
@, Q2. ) 9 FBW w, )7,
. 1 .
Note that the center angular frequency is @w,=——, and hence for series
° JLC

1 1
resonator eyL, =——, and for parallel resonator e,L, = [10].

0~'s Wy p

Vo=

Z,/9, for g, being the resistance
g,/, for g, being the conductance

The lowpass prototype to bandpass element transformation is shown in figure 2.17. [10]

L= L
g L ol s = ( FBWw, )Tng

C, =1/(w;L,)

L, =1/(0,C,)

. Q. g
C, = =
Ig — L, E}C ’ [FBW%]%

Figure 2.17: Basic element transformation from lowpass prototype to bandpass.

The transformation of the lowpass prototype of the circuit shown in figure 2.16
to bandpass is shown in figure 2.18. [10]
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- ==~

Figure 2.18: Lumped element Bandpass filter.

The J and K inverters are used to convert the previous circuit to an
equivalent form that is more suitable for implementation. The use of J inverters
makes the circuit with only parallel resonators as shown in figure 2.19 (a),
whereas the use of k inverters makes the circuit with only series resonators as
shown in figure 2.19 (b) [18]. The Jand K inverters are called impedance/admittance
inverters, and there are various forms that operate as admittance invertors [10].

The J inverters in in figure 2.19 (a) can be replaced by n-type capacitors and
the resulting circuit will contain shunt resonators connected by series capacitors as
shown in Figure 2.20 (a) , and the capacitors represent capacitive coupling
coefficients between adjacent resonators [10].

Similarly, the K inverters can be replaced by inductors and the resulting
circuit will contain series resonators connected by parallel inductors as shown in
Figure 2.20 (b) , and the inductors represent inductive coupling coefficients between
adjacent resonators. [17] The lumped LC resonators shown in figure 2.20 can be
replaced by distributed circuits such as microwave resonators, but this is convenient
only for narrow band filters because the reactance or susceptance of the microwave
resonators are approximately equal to those of lumped elements only near resonance,
which is a small frequency range [10].

R Jo% Jl{%.ﬂ% Jﬂ%.hm R

(a)

AT B CAT R T AT
R 3|K1 K2 K3 JKm kil 3R

(b}

Figure 2.19: Bandpass filter using (a) J-inverters. (b) K-inverters.
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:ﬂﬁ;;:_
i

Figure 2.20: Bandpass filter circuits (a) capacitive coupling between resonators (b)

inductive Coupling between resonators.

2.5.4 Prototype k and q values

Define k and q as prototype values, where k represents coupling between
two resonators, and g represents the external coupling. The q prototype values can be
derived from prototype g vales as follows [19]:

4, =909, (252)
f dd

qn :{ gngn+l orn 0 (2.53)
9,/9,, forn even

Where g, and q, are related to the input and output coupling respectively. The
prototype value is derived from prototype g values as follows:

BW

K, =k; - (2.54)

Q,=q, 1 Q, =g, (2.55)
! qlBW n = BW '

Where fo is the resonant frequency of the bandpass filter and BW is the absolute
bandwidth. Q. is known as the external quality factor, and the external coupling
coefficient is equal to
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K, = }6 (2.56)

_ 909
— gngn+1

And the coupling between resonators is

FBW

K¢, =—— (2.59)
‘ ‘\/gk gk+1

FBW = BfW

(2.60)

0

2.6 Summary

In this chapter coupled resonator networks with two ports have been presented.
It has presented the derivation of the coupling matrix of electric and magnetic coupled
resonator circuits. The different types of microwave filters despite physical structure
have been shown and transformation method of low pass prototype filter to bandpass
filter has been discussed. In the next chapter diplexers synthesis will be discussed.
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Chapter 3
Overview of Microwave Diplexers

3.1 Introduction

In this research, a diplexer design for E-band is proposed. This component will
be used as a front-end in the microwave transceiver of a point-to-point in mobile
backhaul application that offers Gigabit wireless connectivity over a distance of a mile
or more. It is specified to work at the frequency channel bands [CH1: 71-76 GHz
and CH2: 81-86 GHz]. The diplexer will be designed using, two methods:

1. Use external waveguide H-plane T-junction.

2. Use waveguide H-plane manifold structures.
These methods will be explained in depth in the next sections.

3.2 Waveguide T-junction

Waveguide junctions are used when power in a waveguide needs to be split or
some extracted. There are a number of different types of waveguide junction that can be
use, each type having different properties; the different types of waveguide junction
affect the energy contained within the waveguide in different ways [1].

3.2.1 Waveguide junction types
There are different types of waveguide junction. The major types are listed below [1]:
1. H-Plane T-Junction: This type of waveguide junction gains its name because top

of the "T" in the T-junction is parallel to the plane of the magnetic field, H lines
in the waveguide see figure 3.1.

Figure 3.1: (a) Waveguide H-type junction
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(b) Waveguide H-type junction electric fields
2. E-Plane T-Junction: This form of waveguide junction gains its name as an E-

type T junction because the top of the "T" extends from the main waveguide in
the same plane as the electric field in the waveguide see figure 3.2.

™
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Figure 3.2: (a) Waveguide E-type junction

(b) Waveguide E-type junction E fields
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Waveguide T-junctions are important components in many microwave
applications, T-junctions are often used in diplexer configurations, and it was always
felt that the T-junction required certain dimensional parameters to achieve an acceptable
match within the relevant frequency ranges. Therefore, The optimized T-junctions are
used inthe design of awide bandwidth, low loss, high power diplexer [2].

3.3 Traditional Diplexer

Diplexers are typically employed to connect the Rx and Tx filters of a transceiver
to a single antenna through a suitable three-port junction [3]. This is conventionally
achieved by using a two of bandpass filters, and divider. The channel filters
pass frequencies within a specified range, and reject frequencies outside the
specified range, and the divider splits the signal going into the filters, or
combines the signals coming from the filters [4]. The most commonly used
distribution configurations are E-plane or H-plane 2-furcated power dividers [5, 6],
circulators [7], manifold structures [8-11], Y- junction [12] and T -junction [13].

Figure 3.3 shows the configuration of two-channel diplexer with a 1:2 divider

diplexer network whereas figure 3.4 shows a circulator configuration, where each
channel consists of a bandpass filter and a channel-dropping circulator [7].

S )

1: 2 Power Divider

Chl Ch 2

l l

fl fz

Figure 3.3: Configuration of Diplexer with a 1:2 divider network.
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Figure 3.4: Diplexer using circulator element.

In manifold configurations, channel filters are connected by transmission
lines: Microstrip, coaxial, waveguide, etc. and T-junctions . The configuration of the
T-junction diplexer shown in figure 3.5 , and manifold diplexer is shown in figure 3.6

[8] and it consists of a two of waveguide filters connected to a short- circuited length of
waveguide (the manifold).

H-plane
T junction

Channel
filter |

Common

port
®

Figure 3.5: Block Diagram of H-plane diplexer
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Waveguide

Wide dimension Filter 2

Figure 3.6: waveguide manifold implementation

In [12], resonant Y-junction for the design of compact rectangular waveguide
diplexers is presented. The junction contains an elliptic ridge which serves as common
dual-mode resonator for both channel filters as shown in Figure 3.7. The junction itself
constitutes therefore the first resonators of the filters, thus allowing for considerable size
reduction with respect to the conventional diplexer implementation.
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3.3.1 Configuration of a conventional Diplexer

This section presents equivalent circuit and design equations of a conventional
diplexer, The equivalent circuit of a diplexer consisting of two bandpass filters with a
rectangular H-Plane waveguide T-junction is shown in figure 3.8 [13], where the

transformer ratio n and the susceptance b, can be calculated using formulas in [14].

ol B

Figure 3.8: Architecture of diplexer with H-plane waveguide T-junction.

The diplexer in figure 3.8 has input admittance at port 1 as follows [14],

Yin =n°(j0y +yi +yi) 3.1)
Where y:* is the admittance at input port of the TX filter with the other port

terminated with the reference load, and similarly, y** is the admittance at the input port

of the Ry filter with the other port matched. These admittances are expressed in terms of
S,; parameters of the individual Tx and Rx filters as follows,

TX
X _ 1_511

in 1+SLX (3.2)
RX
_RX — 1_511
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The S, parameter of the diplexer is expressed in terms of the input admittance y, as
follows,

1-vy.
S — In
" 1+ y in (3.4)

The transmission parameters s,, and s,, of the diplexer are expressed as follows [12],
X TX
S, (L+Yi )

321 = 3.5
1+jnb0+n.yiTnx +ny 39
n

L s aeyd)
S (3.6)
1+an0+n.y;X +n.y
n

3.4 Literature review on E-Band Diplexers

Many structures of diplexers have been proposed in literature. In [15], a 60 GHz
diplexer filter for Gigabit wireless applications is presented. The diplexer filter is based
on 10- pole bandpass blocks combined by a purposefully designed waveguide junction.

A very compact outline is achieved by stacking pairs of resonators, which are
fabricated as cavities inside a central part of the filter body. Three plastic molded parts

are fabricated in perfect fit and assembled by a glue- and solder-less press-fitting
process as shown in figure 3.9.
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Figure 3.9: 60 GHz Diplexer 3D Design.

3.5 Diplexers with a common resonator junction

Diplexers with a common resonator junction have a common port coupled to Tx
and Rx filter by a common resonator (an extra resonator besides those of the Tx and Rx
filters) as illustrated in figure 3.10 [16].

RX Filter
Port 3
P
Port | o~
VA
O I
--\'
- - < '>‘| > iy
~ _— i —0
Coo T~ il P e
— o
- Port 2

| TX Filter

Figure 3.10: Diplexer resonator as common junction.
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3.6 Summary

In this chapter an overview of microwave diplexers has been presented.
Different types of microwave diplexers configurations such as H-plane T-junction,
manifold and star junction diplexers have been shown and the analysis of H-plane
waveguide T-junction diplexer has been presented. In the next chapter, an E-band
waveguide diplexer for gigabit wireless connectivity will be designed with two methods
by utilizing CST2012.
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Chapter 4
Design of Diplexer for E-band Systems

4.1 Introduction

The microwave filter is necessary and vital component in a huge variety of
electronic systems, including mobile radio, satellite communications and radar. This
chapter exhibits design and realization of bandpass Chebyshev filter for E-band [71-76
GHz] downlink, and [81-86 GHz] uplink. Two diplexers have been designed, the first is
a T-junction diplexer, and the second is a manifold diplexer. The implementation of
these devices has been done using rectangular waveguide cavity resonators that
are suitable for low-cost mass fabrication. Also, they have advantages in microwave
frequencies due to their high unloaded quality factors and their ability to handle large
amounts of power.

The theory of waveguides and rectangular waveguide cavities relevant to
the design process of waveguide cavity components is first discussed here. Then
the extraction of coupling coefficients and external quality factors from physical
structure will be shown. Different coupling structures involving inductive/capacitive
irises will be illustrated. Design and simulation results of the proposed diplexers will be
presented throughout this chapter.

4.2 Waveguide

Waveguides, like transmission lines, are structures wused to guide
electromagnetic waves from point to point. However, the fundamental characteristics of
waveguide and transmission line waves (modes) are quite different. The differences in
these modes result from the basic differences in geometry for a transmission line and a
waveguide [1].

Waveguides can be generally classified as either metal waveguides as shown in
Figure 4.1 or dielectric waveguides as shown in figure 4.2. Metal waveguides normally
take the form of an enclosed conducting metal pipe. The waves propagating inside the
metal waveguide may be characterized by reflections from the conducting walls. The
dielectric waveguide consists of dielectrics only and employs reflections from dielectric
interfaces to propagate the electromagnetic wave along the waveguide [1].
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Rectangular Waveguide Circular Waveguide

Figure 4.1: Metal waveguide

' ‘ (1,8,)

Dielectric Slab Waveguide Optical Fiber

Figure 4.2: Dielectric waveguide

4.3 Rectangular Waveguide Cavity Resonator

Rectangular waveguides were one of the earliest types of transmission lines used
to transport microwave signals and are still used today for many applications. A large
variety of components such as filters, couplers, detectors, isolators, attenuators, and
slotted lines are commercially available for various standard waveguide bands from (1
GHz to over 220 GHz) [1].

A rectangular cavity may be considered as a section of a rectangular waveguide
terminated at both sides with conducting plates. Figure 4.3 shows a rectangular cavity of
width a, height b, and length d, for b <a <d [1].
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Figure 4.3: Rectangular Waveguide Cavity

d

For a rectangular waveguide, the transverse electric fields (Ey, Ey) of the TEm, or TMmn
mode can be written as [1],

E, (x,y,z)=e(x,y)[A%e 1/ y Agiim] 4.1)

where e(x,y ) represents the transverse variations in the x and y directions, A*, A" are

the arbitrary amplitudes of the travelling waves in the +z and -z directions.
The propagation constant g, is given by

2 2
, (mrx nr
Bon = \/ k —(?) —(F] (4.2)
Wherek =27f j\/ue, and p and € are the permeability and permittivity of the material
filling the waveguide, f, the operating frequency.

The boundary conditions of the waveguide cavity at z=(0,d) require that
E(x,y,z)=0 . Applying the condition E. =0at z=0 to equation (4.1) yields

A*=-A", and applying the condition E: =0at z=d, yields L., d=Ilr, where [=1, 2,

3..., this means that the cavity length must be an integer multiple of a half-guide
wavelength at the resonant frequency. The cut-off wavenumber of the rectangular cavity

can be defined as:
mz ) nz Y 7Y
a b d
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where the indices m, n, | correspond to the number of half wavelength variations
in the X, vy, z directions, respectively. The TE__ or the TM __ modes will have a

mnl mnl
resonant frequency,
2 2 2
o= Km  _C (m”) J{n—”) +(I—”) (4.4)
"™ onfue 2rmue, a b d '

Where ¢ is the velocity of light 3x10°m/s, If b < a < d, the mode with the
lowest resonant frequency, known as the dominant mode, will be TEj; mode.
The field configuration of the dominant TE;;; mode is shown in figure 4.4,
where the dashed lines represent the magnetic field, and the solid lines and the
circles represent the electric field [2].
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Figure 4.4: Field configuration of dominant TEj; mode

4.4 Unloaded Quality Factor

The unloaded quality factor Q,, is a figure of merit for a resonator. It describes
the quality of the resonator in terms of losses and energy storage. For example, a high Q
resonator implies low energy loss and good energy storage, whereas a low Q
cavity implies higher losses [3]. A general definition for @Q,, that applies to any type
of resonator is,

_ Time—average energy stored in the resonator 45
Qu (4.5)

Average power lost in the resonator

The losses in a resonator can generally be associated with the conductor,
dielectric material, and radiation. The total Q,, may be defined by adding these losses
together as follows,
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i:i+i+i (4.6)
Q. Q Q Q

Where Q.,Qq and Q, are the quality factors associated with losses from conductor
and dielectric making up the cavity and radiation from the cavity respectively.
The loaded quality factor Q; may be defined in terms of the unloaded quality factor Q,,
and the external quality factor Q. as follows [1],

R @)
Q. Q& Q.

where Q. is the quality factor associated with effective losses through the external
coupling circuit, and it is defined as the ratio of the energy stored in the resonator to the
energy coupled to the external circuit. The extraction of the external quality factor from
the physical structure will be described in the next section.

Considering an air-filled waveguide cavity resonator, for the TEjoz mode, the
unloaded quality factor due to the losses in the conducting walls is given by [1],

(klola'd )3b77

Q.= 27°R_ (2% +20d° +a'd +ad )

(4.8)

Where n = \/u/€ is the wave impedance, and Rgis the surface resistance of the
conductive walls (with conductivity of 6), and it is calculated by [1]:

_ |ou
Rs _\/; (49)

In coupled-resonator circuits with a filtering response, resonators with finite
unloaded quality factors result in passband insertion loss. As the @, values of the
resonators decrease, not only the passband insertion loss of the filtering response
increases, but also the selectivity becomes worse. Hence, it is crucial for the
designer to choose resonators with high @, values so that insertion loss
specification is met. Generally, the insertion loss is proportional to the number of
resonators, and inversely proportional to the fractional bandwidth (FBW ) of the
bandpass filter. The increase in (dB) in insertion loss ( AIL ) at the center
frequency of the filtering response is given by [1],

0
AL =4.343Y —=> g dB (4.10)
278w 0,

where Q. is the low pass cut-off frequency, and g; represents the lowpass
prototype element value of resonator i, as in equation (2.41).
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4.5 Coupling in physical terms

After determining the normalized coupling matrix [k] for a coupled
resonator topology, the actual coupling matrix [K] of a coupled resonator device
with given specification can be calculated by prototype de-normalization of the
matrix [k] at a desired bandwidth and a center frequency f,, as follows,

K, =k, ; FBW (4.11)

1]

Where FBW is the fractional bandwidth, the actual external quality factor Q. is related
to the normalized quality factor g, by,

q
=t 4.12
=W (4.12)

The next step is to construct a structure of coupled resonators and implement
the required coupling coefficients of the matrix [K] physically. The extraction of the
coupling coefficient K;; of two coupled resonators and the external quality factor Q.
from the physical structure is presented in the next subsections.

4.5.1 Extraction of coupling coefficient from physical structure

In general, every two coupled resonators may have the same or different
resonant frequency, where the coupling coefficient between the resonators defined as
the ratio of coupled energy to stored energy [4]. In coupled resonator circuits, the
coupling between them can be electric or magnetic or mixed coupling. Here, the
coupling coefficient for a selected resonator pair can be obtained from the physical
structure using electromagnetic (EM) simulation. To extract the coupling coefficient of
two asynchronously coupled resonators, a general formula that applies to any
type of resonators is used [5],

1 2 22 2 2 \2
K —+= woz_'_a)me (a’z_a)lj | Dop — Dy (4.13)
- 2 2 2 2 :
2 a)Ol 0)02 0)2 +CO1 a)OZ +(001
where mo; and wg; are the resonant frequencies of the two coupled resonators, ®; and m;
are the lower and higher frequencies in the magnitude of S,; response of the two
coupled resonator structure with the ports are very weakly coupled to the resonators.
The characteristic parameters oz, g2, ®1 and w; can be determined using full-wave EM
simulations as computer simulation technology (CST 2012). Figure 4.5 shows an
example of a structure of two inductively coupled waveguide cavities that are

weakly coupled to the ports, and figure 4.6 depicts the simulated |Sy;| response
showing the frequency peaks ®1 and ;.
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Figure 4.6: |S,;| of two coupled resonators showing two frequency peaks [6]

The formula in equation (4.13) is applicable for synchronously coupled resonators, and
in this case it is simplified to [4],

2 2 2 2
K=-+2"% LSl

+ + 4.14
@ + ! f2+f7° (414)

The coupling coefficient usually correspondsto a magnetic coupling or an electric
coupling. These two types of coupling exhibit opposite signs for the coupling
coefficient [4].
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4.5.2 Extraction of external quality factor from physical structure

The external quality factor of a single resonator can be found by simulating |S2i|
response with one port weakly coupled. Figure 4.7 shows an example of a
waveguide cavity that is externally coupled to the input port via inductive iris, and
weakly coupled to the output port. The external quality factor Q, can then be
calculated from the simulated |Sz;| response using the following formula [5],

Q, =2 (4.15)

A®, 45

Where w, the resonant frequency of the loaded resonator and Aw,34p IS the 3dB
bandwidth, as shown in figure 4.8

Weak

Coupling
External
Coupling

Input
Port

Figure 4.7: Externally coupled waveguide cavity resonator
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Figure 4.8: Response of |[S21| for loaded resonator [6]

4.5.3 Inductive and capacitive irises

Coupled resonators filter and diplexer have been implemented using waveguide
cavity resonators. The initial dimensions of the coupling irises can be determined
for the required coupling coefficients by following the procedure explained in section
4.5.

Figure 4.9 shows different coupling structures for two waveguide cavities
coupled together using capacitive or inductive irises. Half wavelength cavities that
resonate at the fundamental TE;0; mode are commonly used in rectangular waveguide
filters [5].

4.6 Filter for downlink channel

A 5™ order waveguide cavity resonator bandpass filter has been designed with
chebyshev response. The waveguide filter has been designed according to the iris
coupled resonators as shown in section 4.3. The filter is designed at E- band [71GHz-
76GHz] downlink channel of mobile backhauling with the center frequency of 73.5
GHz, bandwidth 5 GHz and the reflection loss of 20dB at the passband. The input and
output external quality factors and the coupling coefficients are computed for fractional
bandwidth FBW=6.8% as discussed in section 2.5. The computed values are:
K12=K45=0.0589, K»3=K34=0.0432, and Qe =14.279.
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Figure 4.9: Different coupling structures for inductive and capacitive irises [6]

In CST2012 microwave studio (MWS) [7] based on finite integral technique
(FIT) has been used to find the initial dimensions of the waveguide cavities and
the inductive coupling irises of filter. Each pair of coupled resonators has been
simulated separately to find the dimensions of the length of resonators and coupling
iris corresponding to the required coupling coefficient by following the procedure in
section 2.5.4 and section 4.5.1. The dimensions of coupling irises corresponding to
external quality factors have been found from CST simulation by following the
procedure in section 2.5.4 and section 4.5.2. The structure of the bandpass filter is
initially designed with the obtained initial values as shown in Figure 4.10, and the
CST simulation response of the initial structure of the filter is obtained in figure
4.11. After this, from the initial response, the bandpass filter has been optimized
by CST frequency domain solver to satisfy the required specifications we need. The
lengths of the cavity resonators and the widths of the coupling irises have been
optimized to arrive to the final simulated response given in Figure 4.12. The initial and
final dimensions of the waveguide cavities are shown in table 4.1. The coupling matrix
for downlink filter is as follows:

0
0.0589
k=| O
0
0

0.0589
0
0.0432
0
0

0
0.0432
0
0.0432
0

0

0
0.0432

0
0.0589
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Figure 4.10: Bandpass downlink filter structure with inductive irises
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Figure 4.11: Initial response for downlink filter
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Table 4.1: Dimensions for filter downlink channel

Parameter | Initial (mm) | Final V (mm) Description "WR-12"

a 3.0988 3.0988 Width

b 1.5494 1.5494 Height

d 2.712 2.712 Length of port

dris 2.2 2.0476 Length of R1 & R5

dry, 2.44 2.339 Length of R2&R4

drs 2.48 2.3792 Length of R3

Kciz 1.34 1.28 Length of iris between (R1&R2)
Kceys 1.2244 1.19 Length of iris between (R2&R3)
X 0.35 0.35 Distances between resonators
K 1.8 1.756 External coupling between ports and near resonator

S-Parameter Magnitude in dB

— 51,1
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Frequency / GHz

Figure 4.12: Final filter response downlink channel

4.7 Filter for uplink channel

In a similar way to the previous section, , a filter is designed at E- band [81GHz-
86GHz] for uplink channel of mobile backhauling with the center frequency of 83.5
GHz, bandwidth 5 GHz and the reflection loss of 20dB at the passband. The input and
output external quality factors and the coupling coefficients are computed for fractional
bandwidth FBW=5.98% as follows: K12=K45=0.0518, K33=K3,=0.03808, and
Q. =16.222.

The 3D CST structure of uplink filter is shown in figure 4.13, and the response
of the initial structure of filter is obtained in figure 4.14. The lengths of the cavity
resonators and the widths of the coupling irises have been optimized to arrive to the
final simulated response given in figure 4.15. The initial and final dimensions of the
waveguide cavities are shown in table 4.2. The coupling matrix of the uplink filter is
given below.
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Figure 4.13: Bandpass uplink filter structure with inductive irises

S-Parameter [Magnitude in dB]

— 51,1
- 51,2

Frequency / GHz

Figure 4.14: Initial response for uplink filter
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Table 4.2: Dimensions for filter uplink channel

Parameter | Initial (mm) | Final (mm) Description "WR-12"

a 3.0988 3.0988 Width

b 1.5494 1.5494 Height

d 2.2046 2.2046 Length of port

dris 1.8 1.6522 Length of R1 & R5

dra, 2.02 1.9 Length of R2&R4

dr; 2.05 1.93 Length of R3

Kciz 1.14 1.1296 Length of iris between (R1&R2)
Kcys 1.052 1.047 Length of iris between (R2&R3)
X 0.35 0.35 Distances between resonators
K 1.58 1.8 External coupling between ports and near resonator
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Figure 4.15: Final filter response uplink channel

4.8 E-band Diplexer design

Microwave diplexers are typically employed to connect the RX and TX filters of
a transceiver to a single antenna through a suitable three port junction. The increasing
development over the last years of mobile communication systems has stimulated the
need for compact high selectivity diplexers to be used in both combiners for base
stations and millimeter wave point-to-point radio links.

An E-band [71GHz — 86GHz ], 10-resonator diplexer has been designed and
implemented using waveguide cavity resonators. The diplexer has a 5 GHz
bandwidth of each channel, a center frequency of 73.5 GHz for channel 1 and 83.5
GHz for channel 2, and a desired return loss at the passband of each channel of
20 dB and desired isolation of 60 dB.
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4.8.1 H-plane waveguide T-junction

It is desirable to have the T-junction with one of its ports well matched
over a reasonable wide frequency band for high power system. The purpose of the T-
junction is to divide power equally without any reflection. To do so, we usually add an
iris or a post in the junction area so that this iris or post behaves as an inductor and
makes each port of the tee-junction matched, by changing its shape and the location, it
can divide power equally without reflection [8].

The two filters have been connected together with ridge waveguide T-Junction
that is shown in figure 4.16 and its response is shown in figure 4.17. The ridge has been
used to achieve matching by controlling the ridge width and length x, y respectively.

Ridge WG

Figure 4.16: Ridge waveguide T-junction
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Figure 4.17: s;1 response of ridge waveguide T-junction
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4.8.2 Diplexer design with T-junction

After achieving matching in the T-junction, the diplexer has been designed with
two channels and connected by T-junction. The diplexer structure is shown in figure
4.18, 4.19 respectively and the initial response is shown in figure 4.21.

The most common method for the design of microwave diplexers is based
on optimization [9], [10]. The entire configuration, i.e. filters, is determined by
minimizing a proper objective function that often depends on tens of variables.

Finally the whole diplexer is optimized by CST frequency solver to obtain the
desired specifications shown in table 4.3. The final response of the T-junction diplexer
is shown in figure 4.22. Moreover the parameters for initial and final designs are
presented in table 4.4.

Table 4.3: Specification of the E-band diplexer

Band Frequency Range [GHZ] Specification

Low Guard Band 0-69.5 Rejection 20 dB Minimum

Channel 1 7176 Insertion Loss 0.5 dB Maximum
Reflection Loss 14 dB Minimum
Isolation 60 dB Minimum

Mid Guard Band 77.5-79.5 Rejection 20 dB Minimum

Channel 2 81 - 86 Insertion Loss 0.5 dB Maximum
Reflection Loss 14 dB Minimum
Isolation 60 dB Minimum

High Guard Band 87.5-96.7 Rejection 20 dB Minimum
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Figure 4.18: 3D CST E-
band H-plane T-Junction
diplexer

channel 2 [ 81-86GHz ]

Ridge T-Junction

channel 1 [ 71-76GHz ]

Figure 4.18: (a) 3D CST E-band diplexer
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Figure 4.19: layout H-plane
T-junction E-band diplexer
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Figure 4.20: Initial response for T-Junction E-band diplexer
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Figure 4.21: Final response for E- band H-plane T-junction diplexer
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Table 4.4: Initial and final dimensions of the E-band T-junction diplexer

Parameter Initial (mm) Final (mm) Description "WR-12"

a 3.0988 3.0988 Width

b 1.5494 1.5494 Height

d 4 4 Length of port

drl5 f70 2.0475 2.0475 Length of R1 & R5 filter 70GHz

dr24_f70 2.34 2.34 Length of R2&R4 filter 70GHz

dr3 _f70 2.379 2.379 Length of R3 filter 70GHz

Kcl2 70 1.28115 1.28115 Length of iris between (R1&R?2) filter 70GHz
Kc23 70 1.193595 1.193595 Length of iris between (R2&R3) filter 70GHz
dr 0.35 0.35 Distances between adjacent resonators

Ke 180 1.58 1.596 External coupling between ports and near resonator
Ke f70 1.755 1.77 External coupling between ports and near resonator
drl5 80 1.6525 1.6525 Length of R1 & R5 filter 80GHz

dr24_f80 1.901 1.901 Length of R2&R4 filter 80GHz

dr3_f80 1.935 1.935 Length of R3 filter 80GHz

Kcl2 80 1.131 1.131 Length of iris between (R1&R?2) filter 80GHz
Kc23 80 1.046 1.046 Length of iris between (R2&R3) filter 80GHz
d port f70 2 2 Length port 70GHz

d port_f80 2 2 Length port 80GHz

d_right 2.8 1.73 Length of right arm of T-junction

d_left 1.7 1.62 Length of left arm of T-junction

X 0.16 0.17 Width of ridge T-junction

Y 1.363 15 Length of ridge T-junction

4.9 Manifold Diplexer

Waveguide manifold diplexers have been widely used in wireless applications

that require high power capability and low insertion loss in the passband of each
channel. The manifold is simulated as a cascade of H-plane T-junctions, with the
perpendicular ports not facing the same side of the manifold (Fig. 4.23(b)). The purpose
of the T-junction is to divide power and phase equally without any reflection as
discussed in section 4.8.1. So we used ridge of H-plane T-junction in manifold diplexer
for two tee power divider. CST simulator is used to simulate the single H-plane T-
junction, which the distance between elements is larger than a quarter of the guide
wavelength, 1,/4 [11].

The typical manifold diplexer consists of a two waveguide filters connected to a
short circuited length of waveguide or open circuit as shown in figure 4.22. Here will be
used short circuit. The overall design for manifold diplexer is shown in figure 4.23, 4.24
respectively. The frequency solver optimization used to get desired response as shown
in figure 4.25 and all dimensions shown in table 4.5.
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Figure 4.22: Equivalent network representation of the H - manifold diplexer
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Figure 4.23: Equivalent layout representation of the H - manifold diplexer
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Figure 4.24: 3D CST of manifold diplexer
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Figure 4.25: Final response of H - manifold diplexer
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Table 4.5: All initial and final dimensions of the E-band manifold diplexer

Parameter Initial (mm) Final (mm) Description "WR-12"

a 3.0988 3.0988 Width

b 1.5494 1.5494 Height

d 4 4 Length of port

drl5 f70 2.0475 2.0475 Length of R1 & R5 filter 70GHz

dr24_f70 2.34 2.34 Length of R2&R4 filter 70GHz

dr3 _f70 2.379 2.379 Length of R3 filter 70GHz

Kcl2_f70 1.28115 1.28115 Length of iris between (R1&R?2) filter 70GHz
Kc23 f70 1.193595 1.193595 Length of iris between (R2&R3) filter 70GHz

dr 0.35 0.35 Distances between adjacent resonators

Ke 180 1.58 1.596 External coupling between ports and near resonator
Ke f70 1.755 1.77 External coupling between ports and near resonator
drl5 f80 1.6525 1.6525 Length of R1 & R5 filter 80GHz

dr24 f80 1.901 1.901 Length of R2&R4 filter 80GHz

dr3_f80 1.935 1.935 Length of R3 filter 80GHz

Kcl2 80 1.131 1.131 Length of iris between (R1&R?2) filter 80GHz
Kc23 f80 1.046 1.046 Length of iris between (R2&R3) filter 80GHz
dt_port 70 2 2 Length port 70GHz

dt_port_f80 2 2 Length port 80GHz

dt_short 2.8 1.7269 Length of right arm of T-junction

d_left 1.7 1.62 Length of left arm of T-junction

X1 0.07 0.1 Width of ridge T1-junction

Y1l 1.3 0.1019 Length of ridge T1-junction

X2 0.07 0.08 Width of ridge T2-junction

Y2 0.9 1.05169 Length of ridge in T2-junction

Ke 80 _in 1.58 1.58637 External coupling between ports and near resonator
Ke 70 in 1.755 1.819 External coupling between ports and near resonator
dt_common 2.121 1.6 Distance between two t junction
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4.10 Comparison Between two Diplexers

Figure 4.26 shows that the comparison between the two different design
methods of waveguide diplexer for E-band technology. The evaluation of the obtained
results show that the common waveguide H-plane T-junction gives the best results for
return loss -16.6 dB at downlink channel and -14.5 dB at uplink channel with insertion
loss -0.03dB. The manifold diplexer takes the second grade of this comparison which
has -14.8 dB return loss at downlink channel and -13.8 dB at uplink channel with -0.14
dB insertion loss. The isolation Sy; between two uplink and downlink channels for both
diplexers is as follows: - 65 to - 95 dB for T-junction diplexer and -75 to -95 dB for
manifold diplexer. Moreover the T-junction has sharper transitions than manifold
diplexer.

S-Parameter [Magnitude in dB)
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e T-junction
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Figure 4.26: Comparison of manifold and T-junction diplexers
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4.11 Comparisons with Commercial Diplexer

At the end of work, we will compare our diplexers designed be using CST2012
Microwave Studio was based on Finite Integration Technique (FIT) and some
commercial E-band diplexers made by the companies MESL Microwave and K&L. The
comparison is shown in table 4.6. See appendix A for datasheet of diplexers.

Table 4.6: Comparison with MESL and K&L companies

Brand MESL , K&L Diplexer Thesis Diplexer

Pass Band Frequencies 71-76 GHz &81-86 GHz 71-76 GHz &81-86 GHz

Return Loss 14 dB minimum 15 dB minimum

Isolation 60 dB minimum 65 dB for "T- junction" ,
and 75 dB for "manifold"”
minimum

4.12 Summary

In this chapter the design procedure of two diplexers for E-band system has been
presented. The first diplexer contains a T-junction and the second contains a manifold.
The relationship between the coupling coefficients and the physical structure of coupled
resonators in order to find the physical dimensions of the diplexer has been shown.
Then, the whole structures of the designed diplexers and their responses resulting from
computer simulation technology (CST2012) have been shown. Finally a comparison
between the two designs has been made and another comparison with commercial
diplexers has also been made.
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Chapter 5
Conclusions and future work

5.1 Conclusions

In this thesis, two waveguide diplexers were synthesized and designed to meet
an E-band system, specifically [channel 1: 71-76 GHz downlink and channel 2: 81-86
GHz uplink] which has permitted worldwide for ultra-high capacity point-to-point
wireless communications system for gigabits connectivity.

The diplexers’ design is based on two bandpass waveguide filters connected by
an H-plane T-junction for the first diplexer, and by a manifold (waveguide sections and
T-junctions) for the second diplexer.

At first, each bandpass filter is designed individually, to have fractional
bandwidth (FBW) 6.8% at channel 71-76 GHz and 5.988% at channel 81-86 GHz . 5"
pole chebyshev filter with a passband ripple of 0.0432 dB is chosen for design. The
waveguide filter consists of five coupled rectangular waveguide resonators coupled
together using inductive apertures.

CST 2012 software was used for simulation and design of diplexer, with using
parameter sweep and optimization methods to obtain the desired results. The evaluation
of the obtained results ,show that a common H-plane T-junction gives the best results
for return loss of -15.2 dB and insertion loss of -0.03dB. The manifold diplexer takes
the second grade of this comparison which has -14.5 dB return loss and -0.14 dB
insertion loss. Moreover, the T-junction has sharper transitions than manifold diplexer.

Traditional H-plane T-junction and manifold junction are used to form diplexer.
A ridge has been added in the junctions to mitigate for the poor matching at the inputs

of the waveguide filters. The addition of the ridges has improved the return loss for both
the T-junction and manifold diplexers.
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5.2 Future work

The work on waveguide diplexer can be further developed for resonating
junction between two band pass filters. This junction is an extra cavity coupled directly
with the channel filters without employing any external junction as the H-plane T-
Junction and manifold. | expect for this method the diplexer will be miniaturized and
the response will be sharp.

It is intended to get the diplexers fabricated and tested to validate the design
method. The fabrication will be done in a place where fabrication and measurement
equipment are available.
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Appendix A
A.1 Constants

£, =1.85x10""F /m
U, =47 x107"H /m

A.2 K&L E-band diplexer

Table A.1: specification of diplexer channel

¢ Compliance Matrix:

Characteristics Specifications

CH1: 71-76 GHz

Insertion Loss: 0.7 dB max (0.5 dB typical)
Return Loss: 14 dB min

Tx/Rx Isolation: 60 dB

CH2: 81-86 GHz

Insertion Loss: 0.7 dB max (0.5 dB typical)
Return Loss: 14 dB min

Tx/RX Isolation: 60 dB

Figure A.1: E-band waveguide diplexer
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A.2.1 Outline Drawing
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Figure A.2: E-band diplexer dimensions
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A.3 MESL Microwave E-band diplexer

Table A.2: MESL diplexer specification

MESL E-Band Diplexer Specification

Pass Band Frequencies: 71-76GHz & 81-86GHz
Return Loss: 14dB minimum
Insertion Loss: 0.7dB maximum
High/Low Channel Attenuation: 60dB minimum

Figure A.3: MESL E-band diplexer
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